

3rd INTERNATIONAL CONFERENCE on Sustainable Solid Waste Management, Tinos island, Greece

Domestic composting of food waste using small-scale composter

D. V. VICH, H. P. MIYAMOTO, C. V. DOS SANTOS, L. M. QUEIROZ, V. M. ZANTA*

Brazil

Population: 207 million people in 2014

Per Capita: 1.1 kg domestic and commercial waste

Collected Wastes: 185,000 tons/day

Organic Wastes: 94,335 tons/day

Destination

Domestic and Public Solid Waste Destination (%)

Source: Brazilian Geographic and Statistics Institute, 2010

Objective

Investigate the performance of food waste
composting using a small-scale domestic composter

Methods: Composter

Experiment

Trial 1:

- Food waste + new wood chips
- Duration 63 days
- With feeding once a week

Trial 2:

- Food waste + reused wood chips
- Duration 42 days
- No feeding

Trial 3:

- Food waste + (new wood chips + reused wood chips)
- Duration 40 days
- No feeding

Table 1 Food Waste Characteristics

Parameters	Trial 1 (Feeding 1 to 4)	Trial 2	Trial 3
Moisture (%)	85.3- 90.2	82.6	84.1
VS (%)	71.2 -84,8	94.7	88.1
Carbon (%)	28.8-38.5	30.7	34.4
Nitrogen (%)	1.5-2.3	1.4	1.0
C:N ratio	14-21	22	34
рН	5.0-5.6	3.6	4.9

Table 2 Bulking Agent Characteristics (new wood chips (NWC) or reused wood chips (RWC)

	Trial 1	Trial 2	Trial 3	
Parameters	Feeding 1 to 4 (NWC)	RWC	NWC	RWC
Moisture (%)	10.0	42.2	10.0	15.9
VS (%)	99.1	86.5	99.1	85.3
Carbon (%)	28.6	35.8	28.6	37.1
Nitrogen (%)	0.2	0.9	0.2	1.4
C:N ratio	145	39	145	26
рН	4.4	6.7	4.4	6.9

Procedure

Trial 1

- Start with food waste and new wood chips
- Mixing daily
- Feeding once a week with wood chips and food waste

Trial 2

- Mixed daily in the first week and after this three times a week
- Start with food waste and Reused wood chips

Trial 3

- Mixed daily in the first week and after this once a week
- Start with food waste and reused and new wood chips

Segregation

Compost

Table 3 Initial conditions of the mixture for each trial

Parameters	Trial 1			Trial 2	Trial 3	
	Feeding		Feeding	Feeding	IIIai Z	THAI 5
	1	2	3	4		
Wet weight						
(g)	1178.0	1126.0	1641.0	1753.0	3000	3045
Dry matter (
g)	420.8	405.5	654.8	690.1	885.6	1112.2
VM (g)	388.3	380.8	611.6	661.7	865.6	1009.8
M (%)	67.6	56.5	61.6	58.2	68.8	67.6
VM (%)	92.0	93.6	93.4	90.3	92.5	93.0
C:N ratio	55	39	42	38	31	39
рН	5.2	6.4	6.6	7.3	4.3	5.7

Dry weight at beginning and the end of the trials

Particles size at the end of composting (%)				
	Trial 1	Trial 2	Trial 3	
> 4,76 mm	43.4	9.9	39.3	
4,76 mm > x > 2 mm	39.2	54.5	39.4	
2 mm > x > 1,2 mm	10.0	21.2	13.9	
1,2 mm > x > 0,42 mm	6.5	12.6	6.3	
< 0,42 mm	0.8	1.7	1.1	

Compost Characterization in the trials

Parameters	Trial 1	Trial 2	Trial 3
Dry weigt	8.9	4.2	6.3
Moisture 65°C (%)	28.0	50.7	50.3
VS (%)	66.5	80.9	82.3
Carbon (%)	31.8	40.8	37.3
Nitrogen (%)	1.6	2.5	2.9
C:N ratio	19.9	16.4	13.1
pH (CaCl ₂)	6.7	7.6	8.0
Total Coliforms (MPN/g)	7.6×10^2	2.9×10^3	3.8×10^3
E. coli (MPN/g)	4,1	1.9×10^3	2.5×10^2

Conclusion

- Composting for 63 days was necessary to reach compost which conforms to Brazilian standards which specify Total Coliforms
- The production of compost was very small (particles smaller than 0.42 mm).
- The reused wood chips reduced the quantities of bulking agents required and improve the decomposition.

FEDERAL UNIVERSITY OF BAHIA, BRAZIL POLYTECHNIC SCHOOL

DEPARTMENT OF ENVIRONMENTAL ENGINEERING RESEARCH GROUP ON SOLID WASTE AND WASTEWATER

THANK YOU FOR YOUR ATTENTION!!

Our contacts:

zanta@ufba.br

